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Supplemental Tables 

Table S1.  Survival rate of zebrafish larvae exposed to PFOS over time 
 

Age Control 14 µM PFOS 28 µM PFOS 56 µM PFOS 
24 hpf 97.93 + 2.94 97.67 + 1.75 98.15 + 1.73 97.22 + 2.84 
48 hpf 97.74 + 2.76 97.14 + 1.21 97.09 + 2.10 2.49 + 2.84 
72 hpf 97.43 + 3.25 96.18 + 1.81 95.62 + 2.43 81.54 + 13.23 
96 hpf 96.41 + 5.82 95.72 + 1.20 50.65 + 10.06* 25.00 + 9.89** 
120 hpf 95.93 + 5.85 89.14 + 3.65 7.73 + 3.03**** 5.33 + 2.67**** 

 
Percent survival of larvae aged 24 hours post-fertilization (hpf) to 120 hpf following chronic exposure to 
control solution, 14 µM PFOS, 28 µM PFOS, or 56 µM PFOS statically starting at 4 hpf. Statistics compared 
each timepoint to the 24 hpf timepoint of the same treatment group using unpaired t-tests. + denotes 
standard deviation. *p < 0.05; ***p < 0.001; ****p < 0.0001. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S2. Primers used for qRT-PCR and genotyping 

Gene TaqMan ID or Primer Sequences 

il6 (m17) Dr03098117_g1 

il1b Dr03114368_m1 

tnfa Dr03126850_m1 

actb1 (b-actin) Dr03432610_m1 

pr2y12 
F: 5’-CTTCAGGTCGTCGCTGTTTA-3’ 

R: 5’-AGTGCGTTTCCCTGTTGAT-3’ 

b-actin 
F: 5’-CGAGCAGGAGATGGGAACC-3’ 

R: 5’-CAACGGAAACGCTCATTGC-3’ 

irf8 
F: 5’-ACATAAGGCGTAGAGATTGGACG-3’  

R: 5’- GGATGAGGACCGCACTATGTTTC-3’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S3. PFOS body burden in zebrafish larvae  

Chemical Formula MW 
(g/mol) 

Control 28 µM PFOS 56 µM PFOS 
48 hpf 72 hpf 48 hpf 72 hpf 48 hpf 72 hpf 

PFOS C8HF17O3S 500.13 0.12 + 0.17 0.12 + 0.16 32.22 + 2.57 70.46 + 2.72**** 46.04 + 3.75 109.15 + 5.99**** 

PFNS C9HF19O3S 550.14 0.01 + 0.02 0.00 + 0.00 0.19 + 0.05 0.39 + 0.07**** 0.23 + 0.04 0.69 + 0.20*** 

PFHpS C7HF15O3S 450.12 0.00 + 0.00 0.00 + 0.00 0.35 + 0.17 0.45 + 0.13 0.40 + 0.17 0.55 + 0.11* 

PFHxS C6HF13O3S 400.12 0.006 + 0.01 0.008 + 0.01 0.008 + 0.01 0.007 + 0.01 0.008 + 0.01 0.008 + 0.01 

PFOS body burden (ng/embryo) in 48 hpf and 72 hpf larvae dosed with control solution, 28 µM PFOS, or 
56 µM PFOS from 4 hpf. Our verification of PFOS stock solution revealed contamination by PFNS, PFHpS, 
and PFHxS. As such, we assessed the body burden of these compounds in the PFOS-exposed larvae, as 
well. Statistics compared 48 hpf to 72 hpf of the same treatment group using unpaired t-tests. + denotes 
standard deviation. n = 10 pooled whole larvae from 3 experimental replicates. *p < 0.05; ***p < 0.001; ****p 
< 0.0001. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 



Table S4.  Significantly enriched metabolic pathways following 28 µM PFOS exposure in 3 dpf 
larvae. 
 
 

Significantly Enriched Pathway Physiological Relevance in CNS Source 

Vitamin B1 (thiamin) metabolism - Microglia regulation 
- Neuronal K+ channels regulation  
- Myelinogenesis   
- Improves cognitive function 

(1, 2) 

Valine-leucine and isoleucine 
degradation 

- Neurotransmitter metabolism, 
including glutamate  

- Protein synthesis and energy 
production  

- Nitrogen homeostasis and 
neurotransmitter cycling  

(3, 4) 

Tyrosine metabolism - Catecholamine synthesis 
- Regulator of neuronal longevity 

(5, 6) 

 

Propanoate metabolism - Modulates glutamine synthetase 
in glia 

- Inhibits histone deacetylase in 
GABAergic neurons, increasing 
GABA levels 

(7, 8) 

Phosphatidylinositol phosphate 
metabolism 

- Neurotransmitter receptor 
expression regulation 

- Synaptic vesicle regulation and 
recycling 

- Neurite and dendrite 
morphogenesis 

- Clathrin-dependent membrane 
trafficking 

- Ion channel and transporter 
activity regulation 

(9, 10) 

 

Linoleate metabolism - Modulates astrocyte 
inflammatory response 

- Stimulates axonal growth of 
cortical neurons 

(11, 12) 

 

Limonene and pinene  

degradation 

- Represses neuronal cell death 
- Decreases activated glial cell 

number 
- Involved in neuroprotection 
- Anti-inflammatory and analgesic 

roles 

(13) 

Heparan sulfate degradation - Regulator of axon guidance and 
synapse development and 
specificity  

- Involved in regulating the 
dopamine system 

- Part of the core synaptic 
organizing complexes neurexin 
and neuroligin 

(14, 15) 

Glyoxylate and dicarboxylate 
metabolism 

- Important for carbohydrate 
metabolism and energy 
availability 

(16) 



- Altered following traumatic brain 
injury  

Glutamate metabolism - Involved in nitrogen trafficking 
and ammonia homeostasis in 
brain 

- Excitatory neurotransmitter and 
immediate precursor for the 
neurotransmitter GABA 

(17) 

Chondroitin sulfate degradation - Role in development, plasticity, 
and regulation of cortical circuitry 

- Modulates ion channel 
properties 

- Inhibits structural plasticity (scar 
after injury, axonal pathfinding, 
and synapse formation during 
development) 

- Neuronal excitability modulation 

(18) 

Butanoate metabolism - Neuromodulator largely 
produced by gut microbiota 

- Attenuates neuronal apoptosis 
- Inhibits amyloidogenesis 
- Protects neurons from ischemic 

damage 
- Improves long-term memory 
- Neurodegenerative attenuation 

(19-21) 

Aspartate and asparagine 
metabolism 

- Secondary excitatory 
neurotransmission 

- Amino acid involved in glutamate 
synthesis 

- Influences NMDAR-mediated 
transmission 

- Can evoke presynaptic release 
of endogenous l-glutamate 
release in selective brain regions 

- Synaptic strength and 
connectivity modulation 

(22, 23) 

 
 

 

 

 

 

 

 

  



Supplemental Figures 

 

Figure S1. Microglia quantification, cell death, and proinflammatory cytokine mRNA analysis in 
PFOS-exposed larvae. (A) Quantification of non-parenchymal microglia at 3 days post-fertilization (dpf) in 
control, 28 µM, and 56 µM PFOS-exposed larvae. (B) Quantification of parenchymal microglia at 3 dpf.  (C) 
Quantification of total microglia at 3 dpf. (D) Confocal micrograph of a 3 dpf control-treated larval brain at 1 
hour post-injury (hpi) following a 1-hour live stain with 5 ug/mL acridine orange. (E) Confocal micrograph of 
a 3 dpf 28 µM PFOS-treated larval brain at 1 hpi following a 1-hour live stain with 5 ug/mL acridine orange. 
(F) Confocal micrograph of a 3 dpf control-treated larval brain at 4 hpi following a 1-hour live stain with 5 
ug/mL acridine orange. (G) Confocal micrograph of a 3 dpf 28 µM PFOS-treated larval brain at 4 hpi 
following a 1-hour live stain with 5 ug/mL acridine orange. (H) Quantification of acridine orange positive 
clusters at 1 hpi and 4 hpi. n = 5-9 per group. (I) qRT-PCR results assessing the relative expression of the 
inflammatory genes il6, tnfα, and il1β in isolated heads of control- and 28 µM PFOS-treated 3 dpf larvae (n 
= 4 samples of 10 pooled heads). Confocal micrographs at 20x magnification. ns = not significant. *p < 
0.05. Error bars represent standard deviation. Box plot limits represent 25th to 75th percentile, with the 
midline representing the median. See Excel Table S1 for additional statistical details.   

 

 

 

 



 

Figure S2. Control for the optogenetic microglia stimulation experiment by stimulating 
halorhodopsin negative microglia. (A) Confocal micrograph of a 3 dpf 28 µM-PFOS exposed brain with 
fluorescently-labeled microglia in magenta. Larvae were unstimulated. (B) Panel A with microglia 
pseudocolored in black and white. (B’-B’’) 3x magnification of boxed microglia in panel B. (C) Confocal 
micrograph of a 3 dpf 28 µM-PFOS exposed brain with fluorescently-labeled microglia in magenta. Image 
taken immediately following 4-hour stimulation with 589 nm light. (D) Panel C with microglia pseudocolored 
in black and white. (D’-D’’) 3x magnification of boxed microglia in panel D.  (E) Quantification of microglia 
cell area with and without stimulation to 589 nm light. (F) Quantification of microglia cell perimeter with and 
without stimulation to 589 nm light. (G) Perimeter-to-area ratio of microglia with and without stimulation to 
589 nm light. n = 12 cells per group. ns = not significant. *p < 0.05. Error bars represent standard deviation. 
Box plot limits represent 25th to 75th percentile, with the midline representing the median. See Excel Table 
S1 for additional statistical details.   

 

 

 

 

 

 

 

 



Figure S3. Functional neuroimaging to understand the effects of toxicant exposure on neuronal 
activity.  (A) Schematic overview of CaMPARI photoconversion: free-swimming zebrafish larvae with 
neuron-specific expression of the genetically encoded calcium indicator CaMPARI protein 
(Tg(elavl3:CaMPARI)) are subjected to 405 nm light for 1 minute. Exposure to blue light photoconverts any 
neurons with high intracellular calcium from green to red. (B-D) We modified our Noldus DanioVision 
Behavioral unit, outfitted with LEDs for optogenetic manipulation, to efficiently photoconvert CaMPARI in 
free-swimming zebrafish. (B) A 3D printed pedestal was used to reduce the working distance between the 
light source and zebrafish larvae. Applying the inverse-square law, the light intensity at the apex of the 
pedestal was calculated to be 135 mW/cm². (C) Illustration of the apex of the pedestal containing a single 
well dish (OD 15 mm).  (D) The 405 nm light had an intensity of 5700 mW at the source. The light traveled 
horizontally then was reflected off a dichroic mirror within the unit. The working distance was calculated as 
the distance from the light source to the dichroic mirror (α) plus the distance from the dichroic mirror to the 
apex of the pedestal (β). (E) Confocal micrographs of neuronal calcium following 1-minute photoconversion 
of CaMPARI in 3 dpf larvae treated with egg water or (E’) after 10 minutes in 10 mM pentylenetetrazol 
(PTZ), a GABAA-inhibitor known to induce hyperactivity. (F, F’) Green, non-active neurons with low 
intracellular calcium from panels E & E’. (G, G’) Photoconverted, active neurons with high intracellular 
calcium, pseudo-labeled as magenta, from panels E & E’. (H, H’) An intensity LUTs applied to the active 
neurons from panels G & G’ spectrally mapping the regional increases of neuronal activity on a scale from 
less active (blue) to more active (red-white). (I) Illustrative representation of the larval zebrafish brain with 
labeled brain regions: forebrain (FB), optic tectum (OT), cerebellum (Ce), and hindbrain (HB). (J) 
Quantification of regional and global (whole brain; WB) neuronal activity by the ratio of fluorescent intensity 
in the red versus green channel (FRed/FGreen). n = 16 fish per group. *p < 0.05. Error bars represent standard 



deviation. Box plot limits represent 25th to 75th percentile, with the midline representing the median. See 
Excel Table S1 for additional statistical details.   

 

 
 

 
Figure S4. Regional and global brain morphology in larvae exposed to varying concentrations of 
PFOS. (A) Confocal micrographs of 3 dpf larvae with fluorescently labeled neurons exposed to control 
solution, (B) 7 µM PFOS, (C) 14 µM PFOS, or (D) 28 µM PFOS. (E) Quantification of the forebrain in 3 dpf 
control or PFOS-larvae. (F) Quantification of the optic tectum in 3 dpf control or PFOS-larvae. (G) 
Quantification of the cerebellum in 3 dpf control or PFOS-larvae. (H) Quantification of the hindbrain in 3 dpf 
control or PFOS-larvae. (I) Quantification of the whole brain in 3 dpf control or PFOS-larvae. (J) Confocal 
micrographs of 5 dpf larvae with fluorescently labeled neurons exposed to control solution, (K) 7 µM PFOS, 
or (L) 14 µM PFOS. (M) Quantification of the forebrain in 5 dpf control or PFOS-larvae. (N)  Quantification 
of the optic tectum in 5 dpf control or PFOS-larvae. (O) Quantification of the cerebellum in 5 dpf control or 
PFOS-larvae. (P) Quantification of the hindbrain in 5 dpf control or PFOS-larvae. (Q) Quantification of the 
whole brain in 5 dpf control or PFOS-larvae. Confocal micrographs at 10x magnification. Control n = 52-54; 
treated n = 22-25. Scale bar = 100 um. *p < 0.05; **p < 0.01. Error bars represent standard deviation. Box 
plot limits represent 25th to 75th percentile, with the midline representing the median. See Excel Table S1 
for additional statistical details.   
 



 

 

Figure S5. MWAS of heads collected from control versus PFOS-exposed larvae. Heads were collected 
from 3 dpf control or 28 µM PFOS exposed larvae for an untargeted metabolome wide association study 
(MWAS). (A) Volcano plots of metabolites detected using a C18 column with negative ionization and (B) a 
HILIC column with positive ionization. Green = downregulated; Blue = upregulated. Statistical significance 
was set at p = 0.05.  (C) There are several significantly enriched pathways following both negative ionization 
(pink) and positive ionization (teal). The vertical line is at p = 0.05. Size of each dot represents the number 
of significant metabolites in that pathway. HILIC, hydrophilic interaction liquid chromatography column.  
 

 

 

 

 

 



 

Figure S6. Light/dark behavioral assay in larvae exposed to varying concentrations of PFOS. (A) 
Exposure paradigm: at 4 hpf, zebrafish embryos were statically exposed to 0.1% DMSO (Control) or varying 
concentrations of PFOS (7, 14, or 28 µM). At 24 hpf, embryos were enzymatically dechorionated. Behavior 
was captured at 72, 96, and 120 hpf. (B) Light/dark behavioral assay: zebrafish larvae were placed in 
individual wells of a 24-well plate containing the relevant toxicant solution 18-24 hours prior to the behavior 
assay to allow for well acclimation. A light/dark behavioral assay was performed using the Noldus 
DanioVision Behavioral Unit. The light/dark behavioral assay was as follows: 15-minute acclimation in the 
unit with the light off, 5 minutes with the light on, 5 minutes with the light off, 5 minutes with the light on, and 
15 minutes with the light off. (C) Behavioral activity plot showing distance moved (mm) over time in 3 dpf 
control and 7 µM PFOS-treated larvae. (D) Behavioral activity plot showing distance moved (mm) over time 
in 3 dpf control and 14 µM PFOS-treated larvae. (E) Behavioral activity plot showing distance moved (mm) 
over time in 3 dpf control and 28 µM PFOS-treated larvae. (F) Total distance moved (mm) during the light 
“ON” cycles in 3 dpf control and PFOS-treated larvae. (G) Total distance moved (mm) during the light “OFF” 
cycles in 3 dpf control and PFOS-treated larvae. (H) Total distance moved (mm) during the entire behavior 
assay in 3 dpf control and PFOS-treated larvae. (I) Behavioral activity plot showing distance moved (mm) 
over time in 4 dpf control and 7 µM PFOS-treated larvae. (J) Behavioral activity plot showing distance 
moved (mm) over time in 4 dpf control and 14 µM PFOS-treated larvae. (K) Total distance moved (mm) 
during the light “ON” cycles in 4 dpf control and PFOS-treated larvae. (L) Total distance moved (mm) during 
the light “OFF” cycles in 4 dpf control and PFOS-treated larvae. (M) Total distance moved (mm) during the 
entire behavior assay in 4 dpf control and PFOS-treated larvae. (N) Behavioral activity plot showing 
distance moved (mm) over time in 5 dpf control and 7 µM PFOS-treated larvae. (O) Behavioral activity plot 
showing distance moved (mm) over time in 5 dpf control and 14 µM PFOS-treated larvae. (P) Total distance 
moved (mm) during the light “ON” cycles in 5 dpf control and PFOS-treated larvae. (Q) Total distance moved 
(mm) during the light “OFF” cycles in 5 dpf control and PFOS-treated larvae. (R) Total distance moved (mm) 
during the entire behavior assay in 5 dpf control and PFOS-treated larvae. Control n = 130-190, treated n 



= 88-99. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Error bars represent SEM. See Excel Table S1 
for additional statistical details.   

 

 

 

 

Figure S7. Absolute and relative time spent in center throughout the light/dark behavioral response 
assay. (A) Total time spent in the center of the well during the light on and light off cycles in 3 dpf control 
and 7 µM PFOS-treated larvae. (B) Relative time spent in the center during the light on and light off cycles 
in 3 dpf control and 7 µM PFOS-treated larvae. (C) Total time spent in the center during the light on and 
light off cycles in 3 dpf control and 14 µM PFOS-treated larvae. (D) Relative time spent in the center during 
the light on and light off cycles in 3 dpf control and 14 µM PFOS-treated larvae. (E) Total time spent in the 
center during the light on and light off cycles in 3 dpf control and 28 µM PFOS-treated larvae. (F) Relative 
time spent in the center during the light on and light off cycles in 3 dpf control and 28 µM PFOS-treated 
larvae. (G) Total time spent in the center during the light on and light off cycles in 5 dpf control and 7 µM 
PFOS-treated larvae. (H) Relative time spent in the center during the light on and light off cycles in 5 dpf 
control and 7 µM PFOS-treated larvae. (I) Total time spent in the center during the light on and light off 
cycles in 5 dpf control and 14 µM PFOS-treated larvae. (J) Relative time spent in the center during the light 
on and light off cycles in 5 dpf control and 14 µM PFOS-treated larvae. Control n = 88-102; treated n = 84-



100. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Error bars represent SEM. See Excel Table S1 for 
additional statistical details.   

 

 

 

 

Figure S8. CaMPARI analysis of the habenula in larvae exposed to varying concentrations to PFOS. 
(A) Illustrative representation of a larval zebrafish brain with anatomical regions outlined: forebrain (FB), 
habenula (Hb), and optic tectum (OT). Activity quantification of neuron-driven CaMPARI was performed in 
the entire developing habenula following 1-minute exposure to 405 nm light at (B) 3 dpf and (C) 5 dpf in 
control or PFOS-treated larvae. n = 20-22 fish per treatment.  *p < 0.05. Error bars represent standard 
deviation. Box plot limits represent 25th to 75th percentile, with the midline representing the median. See 
Excel Table S1 for additional statistical details.   

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S9. Distance traveled in control versus PFOS-treated wildtype and macrophage mutant 
larvae. (A) Distance moved (mm) in 3 dpf control or PFOS-treated wildtype (WT) and irf8-/- mutant larvae 
during the light “ON” cycles,  (B) light “OFF” cycles, and (C) throughout the whole behavioral assay. (D) 
Relative time 3 dpf PFOS-treated WT and irf8-/- mutant larvae spent in the center of the well compared to 
control-treated WT larvae. (E) Distance moved (mm) in 5 dpf control or PFOS-treated WT and irf8-/- mutant 
larvae during the light “ON” cycles,  (F) light “OFF” cycles, and (G) throughout the whole behavioral assay. 
(H) Relative time 5 dpf PFOS-treated WT and irf8-/- mutant larvae spent in the center of the well compared 
to control-treated WT larvae. n = 14-22 per group. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Error 
bars represent SEM. See Excel Table S1 for additional statistical details.   

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S10. Microglia response to brain injury in control versus PFOS-exposed versus PTZ-exposed 
larvae at 3 dpf. Larvae with transgenic expression of macrophages (Tg(mpeg1:EGFP)) were dosed with 
either (A) control or (B) 28 µM PFOS at 4 hpf, or (C) 5 mM PTZ at 72 hpf, followed by brain injury. Confocal 
micrographs are representative images at 4 hpi, with the area of microglia response shaded in the magenta. 
(D) Quantification of the area of responding microglia around the injury site at 4 hpi. n = 14-21 per group. 
ns = not significant. *p < 0.05; **p < 0.01. Error bars represent standard deviation. Box plot limits represent 
25th to 75th percentile, with the midline representing the median. See Excel Table S1 for additional statistical 
details.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S11. Light/dark behavioral analysis in PFOA-exposed larvae. Zebrafish larvae were subjected 
to a 30-minute light/dark behavioral assay at 5 dpf. (A) Behavioral activity plot of distance moved (mm) over 
time in 5 dpf control or 64 µM PFOA-treated larvae. (B) Distance moved during the light “ON” cycles in 
PFOA-treated larvae relative to controls. (C) Distance moved during the light “OFF” cycles in PFOA-treated 
larvae relative to controls. (D) Total distance moved throughout the behavioral assay in PFOA-treated larvae 
relative to controls. (E) Time (ms) 5 dpf control or 64 µM PFOA-treated larvae spent in the center of the well 
during the light “ON” and light “OFF” cycles. (F) Relative time 5 dpf 64 µM PFOA-treated larvae spent in 
the center of the well during the light “ON” and light “OFF” cycles relative to controls. (G) Total time 5 dpf 
64 µM PFOA-treated larvae spent in the center of the well relative to controls. n = 24 control and n = 46 
treated for behavior analyses; n = 37 control and n = 35 treated for anxiety analyses. Error bars represent 
SEM. See Excel Table S1 for additional statistical details.   
 

 

 

 

 

 

 

 



 

Figure S12. Body length of 5 dpf exposed to PFOA. (A’-A’’) Images of 5 dpf control-treated larvae. (B’-
B’’) Images of 5 dpf larvae statically treated with 64 µM PFOA. (C) Body length measurements of control 
versus PFOA treatment at 5 dpf. ****p < 0.0001. n = 5-8 per group. Scale = 500 um. Error bars represent 
standard deviation. See Excel Table S1 for additional statistical details.   
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